
Advancing Sensor Fusion with Semantic Folding:  
A Case Study on Municipal Water Pump Monitoring 
Author: Francisco Webber, Cortical.io AG, Vienna 

Abstract 
This paper explores the application of Semantic Folding [1], a representation learning method, to 
sensor fusion challenges, specifically focusing on a municipal water pump monitored by over fifty 
sensors [2]. Sensor fusion, integrating data from multiple sensors to yield a comprehensive 
understanding of system states, faces significant complexities and computational demands, especially 
when implemented in real-time embedded systems. Semantic Folding addresses these issues by 
transforming sensor data into semantic fingerprints—compact, structured representations that reflect 
the system's status at any given moment. Through a detailed case study, we demonstrate how these 
semantic fingerprints simplify the integration process, facilitate real-time processing, and enhance 
system reliability and predictive maintenance capabilities. 
 
Semantic Folding's utility extends beyond specific system complexities or sensor varieties, suggesting 
a broad applicability across various domains. The method transforms sensor data into semantic 
fingerprints that represent the system's current state, facilitating preemptive anomaly detection and 
system characterization without extensive user input on hyperparameters. Future research is 
recommended to optimize the Semantic Folding protocol and expand its analytical capabilities, 
potentially incorporating these fingerprints as feature vectors in machine learning for predictive 
analysis of complex entities like biological organisms, social structures, and electronic circuits. 
 
The proposed framework aims to redefine traditional sensor fusion approaches by integrating scalable, 
flexible semantic analysis, potentially transforming real-time monitoring and predictive maintenance 
strategies across industries. 

1. Introduction 
Sensor fusion is pivotal in fields like Automotive Systems, Robotics, Healthcare, Mobile Devices, 
Aerospace, Defense, Security, Industrial Automation or Environmental Monitoring. [3], [4] 
 
Feature-based sensor fusion is a technique where features extracted from different sensor channels are 
combined to create a unified, richer, more informative representation that can be used for further 
processing and decision-making. This approach is prevalent in many applications across various fields. 
The main motivations for employing feature-based sensor fusion include: 
 
1. Improved Accuracy: By integrating features from multiple sensors, the fused data can provide a 

more accurate and robust estimate of the state of the environment, or the system being monitored. 
This is particularly important in situations where individual sensors might have inherent 
limitations or be susceptible to noise and errors. [5], [6], [7] 

2. Redundancy and Reliability: Multiple sensors can offer redundant information, which enhances 
the reliability of the system. If one sensor fails or provides erroneous data, the system can rely on 
data from other sensors to maintain performance and accuracy. This redundancy is crucial in 
critical applications like automotive safety and aerospace. [8], [9], [10], [11] 

3. Complementary Information: Different sensors capture different aspects of the environment. 
Combining these complementary features can provide a more comprehensive understanding of the 
system. With a comprehensive set of sensors, a representation of the system as a whole – a system 
status – can be generated. [12], [13], [14], [15] 

4. Enhanced Capability for Complex Systems in Realistic Environments: Complex 
environments, such as urban settings or natural terrains with varying weather conditions, can 



challenge the capabilities of a single type of sensor. Feature-based sensor fusion allows for more 
robust performance in diverse and challenging conditions. [16], [17], [18], [19], [20] 

5. Improved Processing Speed and Efficiency: Processing features instead of raw data from 
sensors can be computationally more efficient. This efficiency is crucial for real-time applications 
where decisions need to be made quickly, such as in autonomous driving. [21], [22], [23], [24], 
[25] 

6. Scalability and Flexibility: Feature-based fusion allows for scalability in system design. New 
sensors and features can be added as they become available or as needs evolve without 
redesigning the entire system. [26], [27], [28], [29] 

2. Background and Related Work 
The foundational concepts of Semantic Folding originate from text data analysis, where it is used to 
capture the semantic properties of textual data within representations that are characterized by 
geometry and where similarity is computed using set-theory.  
 
In Semantic Folding three fundamental items are considered: 
 

• Words are the fundamental element of semantics (smallest unit carrying meaning). 
• Sentences are the smallest unit representing a concept. 
• Texts are sets of concepts and constitute a context. 

 
Words are defined by the set of contexts they appear in. During the unsupervised training step text 
snippets (contexts) are compiled and form the semantic grounding of all word definitions covered by 
the overall vocabulary.  
 
This collection of reference texts is distributed over a 2-dimensional metric space, associating a 
specific position with each reference text depending on the word similarity in comparison with all 
other contexts presented. In a next step the list of all words occurring in the whole reference set is 
generated. This constitutes the semantic space (Retina) vocabulary. 
 
For each vocabulary entry all positional coordinates where the word occurs in a context are retrieved. 
The set of retrieved positions constitutes the distributed representation for that word [30], [31], [32], 
[33], [34], in this specific semantic space. After sparsification (2% filling) it becomes a Binary Sparse 
Distributed Representational Vector [35], [36], [37], [38], [39], [40], [41], [42].  
 

 
 
 
Based on the trained semantic space, any given text can be decomposed into its constituent words, 
each of which can be converted into its semantic fingerprint representation. 
 



 
 
In the following illustration the semantic fingerprint of the English word “organ” is rendered. The size 
of the semantic topology is set to 128x128, and the reference set used to train the semantic space is a 
selection of 400K Wikipedia pages. 
 

 
 
 
Sparsity is set to 2%, which means a maximum of 320 positions out of 16384 can be active at any 
given time. Behind every activated position the occurring words can be accessed as context terms. 
It can be observed that the word “organ” is composed of several context clusters: 
 

• Context 1: This is one sense for “organ” in the context of liver, heart, muscle …, anatomy 
® The biological sense of the word “organ”. 

• Context(s) 2: Another sense for “organ” ® organ the music instruments. 
o Sub-Context 2a: The musical instrument “organ” in context of baroque music. 
o Sub-Context 2b: The musical instrument “organ” in context of other musical 

instruments. 
• Context 3: The role of musical “organs” in relation to churches. 
• Context(s) n…: Other less dominant, inspectable, contexts for the word “organ”. 



 
 
The semantic similarity between the word “organ” and the word “piano” is calculated by overlaying 
the two words and counting the number of common bits. They strongly correlate in the contexts 2a, 2b 
and 3 leading to an overall overlap of around 30%. 
 

 
 
If not the entire fingerprint, but only the semantic fingerprint of “Johan Sebastian Bach” is used as 
sub-space (mask) for comparison, it can be noted that the resulting overlap of “organ” and “piano” is 
scaled to 85%. 
 
A major shortcoming of traditional representational methods is that they must be trained separately for 
words, sentences, or paragraphs. It is therefore not possible to directly measure the similarity between 
a word and a sentence as they do not share the same model (set of features). 
 
In Semantic Folding the basic (precalculated) representations are generated for words, more precisely 
even for tokens like “New York” or “Secretary General of the United Nations”. As these token 
fingerprints are sparse vectors they can unconcernedly be aggregated (Boolean union) [43], [44], [45], 
[46], [47] into higher order semantic fingerprints of sentences, paragraphs, documents, books, and 
even whole libraries. 
 



 
 

As a convenient side effect, the resulting aggregated semantic fingerprint has all ambiguous word 
senses removed as only correct contexts will be maintained after re-sparsification. 
 
Semantic Folding has been applied in a wide variety of use cases and research works. See the list of 
references [48] to [77] as examples.  
 
By conceptual analogy we extend this method to numerical data, presenting a novel approach to sensor 
data integration that overcomes the limitations of conventional sensor fusion methods. 

3. Semantic Folding and Sensor Fusion 
Extensive literature supports the notion that the neocortex employs a similar data processing approach 
for all inputs, irrespective of their sensorial origin [78-86]. This universal processing mechanism 
enables the brain to interpret sensory information effectively, helping to construct a coherent 
understanding of the world. Such capability is the result of evolutionary adaptations aimed at 
maximizing the sensory system's ability to decode environmental semantics. Semantic Folding, which 
models these neocortical constraints, can be generalized as follows: 
 

• Semantic Folding is a way to capture the inner state of a system based on a set of perceivable 
external features. The inner state corresponds to a semantic interpretation of the system, 
allowing to understand its current state and to predict what behavior/state change can be 
expected in the future.  

• A system consists of a set of elements that can coherently discriminated. These system 
elements have a state, characterized by some associated feature metric. All elements in a 
system are interdependent which means that a state change of one element affects all others 
within the same system.  

• The perceivable (radiating) features (in contrast to the inner – hidden – features) of the system 
are concurrently sampled by the sensors. The set of all sampled features at a given point in 
time constitute the context for each of the individual features. 
 

This generalized specification can be applied to various types of inputs (beyond its initial special case 
in natural language) by making an appropriate analogy. 

3.1 The Automotive Analogy 
Modern cars contain a multitude of sensors, monitoring all important subsystems like the engine, the 
electric system, the lightning, the driver’s cabin etc. All these measurements are relayed to an onboard 
computer, which subsequently determines any potential next steps. Typically, one can expect to 



receive at least 50-100 measurements per second. With autonomous vehicles, it's likely that the 
number of sensor streams will increase even further.  
 
The on-board computer “interprets”, for instance, the engine temperature as a specific value such as 
“140” meaning a temperature of 140 degrees Celsius measured by sensor #5 in the engine block. The 
only thing the board computer can reliably do is to compare the measured values with the maximum 
permissible temperature specified. Only when some threshold is actually reached, a specifically 
crafted failure procedure is triggered. 

3.2 System State 
The only information the monitoring process receives from its sensor is the scalar 140, which limits its 
ability to react adaptively. As a result, the only recourse is often a drastic reaction once a value 
exceeds the permissible maximum (or minimum). Consequently, it is difficult to implement context 
dependent reaction protocols, as these would have to be implemented as discrete state machines, 
implying a lot of planning, implementation, and testing effort. If the regular operating temperature is 
expected to be 120° Celsius, then a measurement of 140° could have one or several causes: 
 

• The car is currently driving at high velocity (higher than usual). 
• The car is driving up-hill. 
• The ambient temperature is elevated. 
• Strong headwind could be present. 
• A high payload (cargo, caravan) is present. 
• etc. 

 
In none of these cases the value of 140° would be “unexpected”. However, if the ambient temperature 
is low, there is no headwind and the vehicle is driving downhill without passengers, yet the engine 
temperature is rising to 140°, then the car status is confronted with an anomaly. Like in language, the 
context, namely all other concurrently sampled values, defines the meaning of a measured value. 

3.3 Capturing the System State 
To actually implement the Semantic Folding analogy, the following steps are necessary: 
 

• To generate a Retina (semantic space), it is imperative to establish a reference collection. In 
linguistic applications, this entails compiling a comprehensive corpus of valid, real-world 
utterances tailored to the specific use case. Similarly, for automobile sensor fusion, a data 
stream from the car's sensors is recorded under all anticipated driving conditions—day, night, 
varying weather conditions (sunshine, rain, snow), and diverse environments (rural areas, 
inner city, highways, parking garages). Throughout these driving sessions, sets of concurrent 
sensor values are captured every second and stored in a time-series file. This file serves as the 
foundational training material for the Retina. 

• In this driving log, each line functions as a "document" encapsulating all metrics at a given 
instant. Each column within these documents represents a specific sensor, and the total 
number of columns reflects the number of sensors sampled concurrently. Conceptually, each 
line document can be likened to a "context," analogous to a single sentence in textual data. 



• In this schema, each specific measured value, such as “140” representing 140°C of the motor 
block, is treated as a distinct "word." Similarly, a measurement of "141" from the same sensor 
would also constitute a different "word." This analogy equates sensor readings to words in a 
text, emphasizing the distinct identity of each measurement even when it originates from the 
same sensor. 

• Upon completing the Retina training process with the logged data, each sensor document is 
assigned a specific position within the fingerprint map. In the metric space of the fingerprint, 
the arrangement of sensor documents is structured such that documents with similar sensor 

records (Euclidian distance of the document vectors) cluster closely together, while those with 
greater disparities in measurements are positioned at proportionally greater distances. This 
spatial organization within the metric space effectively highlights the similarity and 
dissimilarity among measurement records. The clustering process will group all records 
originating from similar driving conditions—such as inner-city driving, highway driving, 
mountain driving, or parking—into distinct clusters. 

• Once the distribution of sensor documents is established, the "list of all words" is compiled. In 
the automotive context, a "word" represents a discrete scalar value from a specific sensor 

(channel). The actual fingerprint is created by marking the positions on the map with a "1" 
where the corresponding value appears in any document. This method allows for the 
generation and storage of all potential semantic fingerprints within the fingerprint (Retina) 
dictionary. 



• The annotated semantic fingerprint for the value 140° Celsius of the motor block could 
now look like this:  

• The fingerprint of sensor #5 value of 140, now serves as a semantic representation that 
simplifies the assessment of the vehicle's status. This more elevated temperature commonly 

manifests when the car is operating under conditions such as mountain driving, highway 
travel, or in summer weather, indicating specific environmental impacts on vehicle condition. 

• The operational condition of the car can be ascertained by consolidating all individual 
measurement fingerprints from the current sensor document into a unified compound 
fingerprint. For example, encountering a motor block temperature of 140° Celsius during a 
downhill drive in winter would result in a compound fingerprint that is clearly identified as an 
anomaly by displaying unexpected cluster combinations. 

3.4 Predicting Future States 
During the "training-drive," capturing actual failures or synthetically generating sensor documents for 
specific defects enables the creation of a template fingerprint for each defect. When a status fingerprint 
signals an anomaly, as previously described, it can be compared to a catalog of diagnostic defect 
template fingerprints. This comparison helps determine the specific cause of the anomaly, enhancing 
the accuracy and efficiency of diagnostics as well as making a more informed decision on how to 
proceed with the anomaly.  
 
Given the minimal computational demands, anomaly detection and resolution can occur in real time, 
even on edge processing platforms with limited computational capabilities. Moreover, since the 
overlap between the status and the diagnostic fingerprints may evolve over time, this incremental 
anomaly detection can be leveraged for predictive maintenance, allowing for early intervention before 
failures become critical. This approach enhances both the reliability and efficiency of maintenance 
strategies. 



4. Case Study: Municipal Water Pump Monitoring 

 
Addressing the sensor fusion problem at its core, necessitates a realistic dataset, which precludes the 
synthetic creation of data due to the complexity of the hidden semantic information needed. 

For this reason, a real-world challenge hosted on the public Kaggle platform was selected to serve as a 
proof of concept. The challenge centers around a municipal water pump equipped with over fifty 
sensors. It involves analyzing a time series of measurement points, collected minute-by-minute over 
four months, which includes data from periods during which the pump experienced failures—
specifically seven "BROKEN/RECOVERING" periods. This dataset serves as the foundation for 
developing a predictive model that aims to anticipate future failures solely based on sensor readings. 
 
The effectiveness of the predictive model hinges on selecting a data representation format for the 
training vectors that captures and accurately represents the maximum amount of semantic information 
about the internal state of the pump. The prediction accuracy of the future model is closely linked to 
the number of available training examples: poorer representations will require more data. Given that 
the available dataset comprises 220 thousand data points with only a couple of hundred anomaly 
records —a relatively small number for training deep learning type models—it is crucial that the data 
representation is both precise and comprehensive to ensure effective learning and prediction. 



 
The initial step in applying the Semantic Folding method involves constructing a reference dataset 
from data that reflects the water pump's correct, intentional functioning. This dataset includes all 
records labeled as "NORMAL," while excluding those marked as "BROKEN" and "RECOVERING." 
The next phase is pre-processing, which involves normalizing the data by determining the smallest and 
largest values for each sensor and dividing these into predefined bins. Specifically, we utilize 8-bit 
wide bins, leading to a categorization into 255 distinct ranges. The lowest and highest measurable 
values are assigned to range-0 and range-255, respectively. Each sensor channel is prefixed with a 
letter code ranging from A to AZ before the range number to categorize the data effectively. 
 

 



The pre-processing step converts raw sensor readings taken at specific timestamps into discrete 
vectors, each containing 50 numbered bin labels. These vectors, derived from the "NORMAL" data, 
are then used to train the semantic space, referred to as Retina in Semantic Folding terminology. 
 
The vectors previously generated are inputted into the Semantic Folding Training Engine for 
unsupervised training, resulting in the creation of a Retina Dictionary. This dictionary comprises 2-
dimensional binary vectors, or semantic fingerprints, for every measurable value from every sensor. 
Each binary vector is constructed with a consistent underlying topology, ensuring that each bit within 
the vector has a uniform meaning across all fingerprints. For instance, a '1' in bit-23 holds the same 
significance in any fingerprint where this bit is set. 
 

 
 

 
 

 
 
An additional characteristic of these topological 2D binary vectors is their mandatory sparseness—no 
more than 3% of the bits are set in any given fingerprint. The Semantic Folding process has tailored 
the Retina for the water pump to a resolution of 128x128. Ongoing advancements in Semantic Folding 
technology may allow dynamic determination of fingerprint size based on the type and volume of 
time-series data. Current implementations typically employ 128-dimensional semantic fingerprints. 
 
Upon concluding the water pump Retina generation, the system identified 7758 distinct measurement 
bins. The label of each bin, the corresponding sparse binary vector and its frequency within the 
training dataset is stored in the Retina dictionary.  
 
Utilizing the trained Retina Engine, it is now feasible to perform inference by retrieving the 
corresponding semantic fingerprint for each measured value by finding the appropriate entry in the 
Retina Dictionary table. During operation, 50 measured values are recorded every minute. Each of 
these values is processed in the pre-processing module to generate a corresponding fingerprint. These 
fifty binary vectors are inherently sparse, using the fundamental property of sparse vectors: they can 
be combined through union (addition) without losing information. 
 



 
 
 
The incoming measurement fingerprints are therefore aggregated through a binary union to produce a 
weighted sum vector, wherein multiple bits might overlap at various positions. As more output 
fingerprints are added, the composite fingerprint becomes increasingly dense. To maintain the required 
sparsity, the sum fingerprint is re-sparsified at the end of aggregation by applying a threshold that 
limits the filled proportion to 3%. 
 
Consequently, a semantic fingerprint for the entire aggregation vector is computed, covering the same 
semantic space as its component vectors. This composite fingerprint effectively serves as the status 
representation of the underlying system (the water pump), providing a comprehensive snapshot of its 
current operational state. 

5. Results and Discussion 
When the entire timespan of the pump data is converted into semantic fingerprints through the 
previously described method, what emerges is a dynamic chronology—a 'movie'—depicting the 
evolution of the 

 
system's states. One striking observation is the high degree of resemblance between consecutive status 
fingerprints, as evidenced by substantial overlap values. This indicates a consistent portrayal of the 
pump’s condition over time. As environmental variables such as ambient temperature, water pressure, 
or supply voltage change, the time-invariant part of the fingerprint gradually transitions into a new 
stable sub-pattern. 
 



This pattern shift can be discerned in the sequence of fingerprints, even without detailed knowledge of 
the specific sensors involved. The fingerprint’s genuine capacity to encapsulate distinctive operational 
states extends to periods when the water pump is not in operation, providing a comprehensive 
representation of the pump's performance across all real-world contexts. 
The use of semantic fingerprints to represent sensor data permits the discrimination between 
operational and failure states. Furthermore, it enables the subdivision of these states into specific 
conditions that depend on intrinsic and environmental factors. 
 
Each status fingerprint, characterizable by specific conditions such as 'Operation after major rainfall' 
or 'Operation during low water levels,' can be stored and functions as a template. During operation, the 
live stream of fingerprints is compared to the entire template set. The degree of overlap between a 
current fingerprint and the templates serves as a metric that quantifies the current association with 
specific characteristics, for example, indicating a '63% match to low water level mode'.  
 
Fingerprints produced during a failure state can equally serve as templates. The resulting overlap 
metric then provides a "predicted" measure of how closely the current state approximates a failure 
condition. 
 

 

7. Conclusions 
The Semantic Folding mechanism was applied to a dataset consisting purely of 52 sensor 
measurements per minute, with no additional information about the sensor types or measurement 
units. This dataset underwent fully unsupervised training, which was completed in just a few minutes. 
Subsequently, the Retina Engine was capable to convert these 52 measurements into a semantic 
fingerprint and effectively capture the structured information contained therein. When analyzing the 
temporal progression of these semantic fingerprints, a gradual change over time was observed, 
indicating consistency in the data representation. Notably, fingerprints recorded during normal 



operation differed significantly from those obtained during pump failures. Furthermore, the predictive 
capabilities of these semantic fingerprints became evident, as samples closer in time to pump failures 
showed increased overlap with the semantic fingerprints associated with failure states, demonstrating 
their potential utility in predictive maintenance scenarios. 
 
The Semantic Folding method can be applied irrespective of the complexity of the observed system, 
the number of sensors, or their types. It consistently produces a semantic fingerprint that represents the 
system's state. This fingerprint can then be analyzed to extract qualitative aspects or compared against 
failure states to detect anomalies in advance. In all scenarios, calculations based on semantic 
fingerprints are highly efficient, enabling their use in real-time and/or embedded applications. 
Since the method works independently of the specific system or sensors involved, it can be 
implemented in any setting in which a distinct system and corresponding data-sampling sources are 
available. Therefore, the method can be considered a foundational approach with broad applicability 
across various domains. 

8. Future Work 
Further research is required to enhance the fundamental Semantic Folding protocol by minimizing or 
eliminating the need for user-defined hyperparameters such as "Retina size," "binning procedure," and 
"sparsification."  
 
Additionally, another research direction should focus on improving the interpretation of the resulting 
fingerprints, with the aim of developing parameter-free analytical tools that can effectively 
characterize the monitored system.  
 
A third line of research concerns the use of semantic fingerprints as feature vectors for machine 
learning, enabling deep analytical or predictive solutions for highly complex systems such as 
organisms, integrated circuits, societies, etc.  
 
As part of the application research, the Semantic Folding algorithm will be implemented on a 
universal embedded platform (System on Module, or SOM) to facilitate the flexible exploration of 
different instrumentation protocols in real-world scenarios. 
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